
Exam ID1018 19 March 2014 — optional part:

solutions

ID1018

July 9, 2014



Exam — optional part:
solutions

Tasks

Task 1 (4 points)

// sort sorts elements in a vector according to their size ,

// from the least up to and including the greatest

public static void sort (int[] elements)

{

int first = 0;

int last = elements.length - 1;

int least;

int current;

while (first < last)

{

least = first;

current = first + 1;

while (current <= last)

{

if (elements[current] < elements[least ])

least = current;

current ++;

}

int p = elements[first];

elements[first] = elements[least ];

elements[least] = p;

first ++;

}

}

1



Task 2 (2 points + 1 point + 1 point)

a) (2 points)

It is written as Rectangle2D.Double. This means that class Double is defined
as an inner class to Rectangle2D.

The reference rect of type Rectangle2D refers to an object of type Double.
This means that class Double is a subclass to class Rectangle2D.

b) (1 point)

The vector shapes contains references of type Shape. The references can refer
to objects of all classes that implement this interface.

An object of class Rectangle2D.Double and an object of class Ellipse2D.Double
are in the vector shapes. This means that both these classes implement the
interface Shape.

c) (1 point)

The method draw has a parameter of type Shape. That means it can draw all
figures of type Shape (objects of all classes that implement interface Shape).
Since the classes Rectangle2D.Double and Ellipse2D.Double implements
interface Shape, the method draw can draw figures of these types:

Shape r = new Rectangle2D.Double (10.0 , 20.0, 60.0, 40.0);

Shape e = new Ellipse2D.Double (70.0 , 80.0, 40.0, 60.0);

g.draw (r);

g.draw (e);

Task 3 (1 point + 3 points)

a) (1 point)

List list1 = new List ();

2



b) (3 points)

List list2 = new List ();

int[] v = {1, 4, 5, 7};

for (int i = 0; i < v.length; i++)

list2.add (v[i]);

Task 4 (2 points + 2 points)

a) (2 points)

// countDigits accepts a character sequence and returns

// the number of digits in the sequence.

public static int countDigits (CharSequence cs)

{

int count = 0;

char c = 0;

int len = cs.length ();

for (int i = 0; i < len; i++)

{

c = cs.charAt (i);

if (Character.isDigit (c))

count ++;

}

return count;

}

b) (2 points)

String s = new String ("ten 10 fifty 50");

int count1 = countDigits (s);

3



StringBuilder sb = new StringBuilder ("E1D2C3B4A5");

int count2 = countDigits (sb);

Task 5 (1 point + 1 point + 2 points)

a) (1 point)

In the best case the sought element is in the first position in the sequence.
In that case only one comparison is performed. The time complexity of the
algorithm is:

b(n) = 1

b) (1 point)

The worst case happens in two situations: when the sought element is not in the
sequence and when the sought element is the last element in the sequence. In
this situation all elements in the sequence are compared. The time complexity
of the algorithm is:

w(n) = n

c) (2 points)

If the sought element is in the first position there will be one comparison, if it is
on the second position there will be two comparisons, and so on. If the element
is in the last position there will be n comparisons. The probability for each case
is 1

n . The total number of comparisons are:

1

n
+

2

n
+

3

n
+ . . . +

n

n
=

(1 + 2 + 3 + . . . + n)

n
=

n(n+1)
2

n
=

n + 1

2

The time complexity of the algorithm for the average case is:

a(n) =
n + 1

2

4


