
Exam ID1018 19 March 2014 — optional part

ID1018

July 9, 2014



Exam — optional part

Explanations

This part of the exam offers the possibility of a grade higher
than E

In addition to the required part, the student may also answer this optional part
of the exam. This part is only relevant when the student has passed the required
part. If so, the student may collect points on this optional part and achieve a
grade higher than E.

The number of points and grades

In total: 20 points
For a grade of D: at least 4 points
For a grade of C: at least 8 points
For a grade of B: at least 14 points
For a grade of A: at least 17 points

1



Tasks

Task 1 (4 points)

An algorithm that sorts a sequence of comparable elements can be described as
follows:

Set a pointer called first to the first element in the sequence, and
a pointer called last to the last element in the sequence. Also prepare
pointers least and current.

As long as the pointer first is left of pointer last, repeat:
Set the pointer least to the element first is pointing at. Set the

pointer current one position after first.
Repeat the following as long as pointer current is not right of

pointer last:
Compare the elements pointed to by current and least. If the

element pointed to by current is the lesser one, set least to point at
it.

Advance pointer current one step.
Exchange the elements pointed to by least and first.
Advance pointer least one step.

Create a method sort that accepts an integer vector and sorts it according
to the given algorithm.

Task 2 (2 points + 1 point + 1 point)

The classes Rectangle2D and Ellipse2D are defined in the package java.awt.geom.
In the same package there are also several classes called Double. In the
package java.awt there is an interface called Shape, and an abstract class called
Graphics2D.

a) The following statement is correct:

Rectangle2D rect = new Rectangle2D.Double (10.0 , 20.0, 60.0, 40.0);

What can be said about the relation between the class Rectangle2D and the
class Double? Specify two conclusions.

b) The following code fragment is correct:

Shape[] shapes = new Shape [4];

shapes [0] = new Rectangle2D.Double (10.0, 20.0, 60.0, 40.0);

shapes [1] = new Ellipse2D.Double (70.0, 80.0, 40.0, 60.0);

2



What can be said about the relation between class Rectangle2D.Double and
the interface Shape, and between class Ellipse2D.Double and the interface
Shape?

c) In class Graphics2D there is a method called draw, that can draw figures
of various sizes. The method is declared like this:

public abstract void draw (Shape s)

Let g be a reference to an instance of a non-abstract subclass of class
Graphics2D. Use this object instance and its draw method to draw two figures
of different classes.

Task 3 (1 point + 3 points)

The class List represents an integer list:

class List

{

private static class Node

{

public int value;

public Node next;

public Node (int value)

{

this.value = value;

this.next = null;

}

}

private Node first = null;

// add adds a given integer to the list

public void add (int value)

{

Node node = new Node (value );

if (first == null)

first = node;

else

{

Node n = first;

while (n.next != null)

n = n.next;

n.next = node;

}

}

// further methods

}

3



a) Create an empty list of type List, and draw it.

b) Create a list of type List that contains the integers: 1, 4, 5, and 7. Draw
that list.

Task 4 (2 points + 2 points)

A static method countDigits accepts a character sequence of the type
java.lang.CharSequence and returns the number of digits in the sequence.

a) Implement the method countDigits.

b) Call the method twice: use objects from different classes as arguments.

Task 5 (1 point + 1 point + 2 points)

A method search searches for an element in a sequence:

public static int search (int[] element , int e)

{

int elementPos = -1;

int pos = 0;

while (pos < element.length)

{

if (e == element[pos])

{

elementPos = pos;

break;

}

pos ++;

}

return elementPos;

}

An element comparison can be viewed as a fundamental operation in the
algorithm used in method search. Assume that there are n(n ∈ N,n > 0)
elements in the sequence. Determine the algorithm’s time complexity in the
following cases:

a) best case

b) worst case

c) average case

4



To determine the complexity of an average case, assume that the following
conditions hold: the element searched for is present in the sequence, all elements
in the sequence are different, and the probability that the wanted element is
found in a particular position is the same for all positions.

The time complexity is to be shown with a complexity function, and it shall
be visible how this function was arrived at.

5


